根号x^2-1的不定积分 根号(1+x^2的不定积分

  根号x^2-1的不定积分是(1/2【arcsinx+x√(1-x^2)】+C,x=sinθ,dx=cosθdθ。=∫(1+cos2θ)/2 dθ=θ/2+(sin2θ)/4+C。=(arcsinx)/2+(sinθcosθ)/2+C,=(arcsinx)/2+(x√(1-x^2))/2+C。=(1/2)【arcsinx+x√(1-x^2)】+C。

  不定积分求法:

  1、积分公式法。直接利用积分公式求出不定积分。

  2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。

  (1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

  (2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

  3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu

  两边积分,得分部积分公式∫udv=uv-∫vdu。

  不定积分公式

  1、∫kdx=kx+c

  2、∫x^udx=(x^(u+1))/(u+1)+c

  3、∫1/xdx=ln|x|+c

  4、∫a^xdx=(a^x)/lna+c

  5、∫e^xdx=e^x+c

  6、∫sinxdx=-cosx+c

  7、∫cosxdx=sinx+c

  8、∫1/(cosx)^2dx=tanx+c

  拓展资料

  这个根号下的不定积分,符合模型∫√a²-x²dx,本题中就是a=1的情况。根据sin²x+cos²x=1,用sinθ替换x,然后被积函数,被积变量都要改变。

  要做出如图所示的三角形,更容易加深理解。最后要把中间变量θ变回x

  不定积分的意义

  一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

  若在有限区间【a,b】上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

猜你喜欢
榴莲虫可以吃吗 榴莲虫能不能吃
空调制热和辅热的区别 有关空调制热和辅热的区别介绍
麦自立怎么挖出来的 麦自立在哪里挖出来
锁阳和肉苁蓉的区别 新疆锁阳和肉苁蓉的区别
适合一个人做的小本生意有哪些 适合一个人做的小本生意有哪些?
2022年11月6日起广州长隆飞鸟乐园暂时闭园
马铃薯饼如何做 马铃薯饼做的方法
米饭怎么蒸才好吃 米饭蒸才好吃的方法
正宗芥丝的腌制方法 河南正宗芥丝的腌制方法

很赞哦! ()